
 978-1-4673-1184-7/12/$31.00 ©2012 IEEE 290

2012 5th International Conference on BioMedical Engineering and Informatics (BMEI 2012)

Image Edge Enhancement and Segmentation via
Randomized Shortest Paths

Ming Xu, Jun Wang, and Zeyun Yu*
Department of Computer Science and Electrical Engineering

University of Wisconsin at Milwaukee
Milwaukee, WI 53211, U.S.A.

* Corresponding author: yuz@uwm.edu

Abstract—This paper describes a new method for image edge
enhancement and boundary segmentation. Like many interactive
graph-based segmentation methods, users are asked to provide
some foreground (or object) and background seeds. A set of
randomly generated points representing the foreground are
paired with another set of random points representing the
background. The corresponding shortest paths of all such pairs
are found and accumulated. These paths tend to go through the
boundaries of the object of interest. Therefore, the accumulated
paths can enhance the object edges, from which the final
segmentation is obtained. Several experiments are provided to
demonstrate the effectiveness of the proposed approach.

Keywords-image segmentation; edge enhancement; shortest
paths; Monte Carlo method.

I. INTRODUCTION
Image segmentation, as a fundamental problem in image

processing and computer vision, tries to separates an object of
interest from surrounding background in an image and has
received tremendous attention from researchers in the computer
imaging and vision areas. Many other tasks, such as shape
modeling and feature recognition, rely largely on correct
segmentation. Traditionally image segmentation has been
performed by hand, but manual segmentation is very tedious,
inaccurate, and quite often subjective from person to person,
even with the help of sophisticated graphical user interface
[1,2]. On the other hand, automated segmentation is still
considered to be one of the hardest problems in the field of
image processing, although various techniques have been
described for automatic or semi-automatic segmentation.
Commonly used methods include segmentation based on edge
detection [3], region growing and/or region merging [4], active
curve/surface motion [5], watershed immersion method [6],
and normalized graph cut [7] and eigenvector analysis [8].

Among the popular methods used in image segmentation
are graph-based methods. In these methods, an image is treated
as a graph, where each pixel is a node and an edge is created
between two adjacent pixels with 4- or 8-connectivity. There
are several core graph-based algorithms, on top of which many

other approaches are built. The first method is based on graph
cuts [9,10,11], where the goal is to partition the graph into
several connected components with certain optimization
criteria and each of them corresponds to one segmented feature
(or background). This method works in a way similar to data
classification – the intra-class difference is minimized while the
inter-class difference is maximized. The second graph-based
method is the random walker method [12]. This approach also
treats the image as a weighted graph but assigns each pixel to a
seed (belonging to an object or background) by considering the
most likely random walker between the pixel and the seed
found. The third widely used graph-based method for image
segmentation is the shortest path approach [13]. This approach
assigns a pixel to the object if the path from the pixel to the
object seed is shorter than paths to the background seed. All the
three approaches have been formulated into a common
framework in [14,15].

In the present paper we propose a new approach for image
edge enhancement and segmentation. Our method also treats an
input image as a weighted graph and utilizes shortest paths
between two pixels. However, our method differs from other
approaches in that the source and sink of a path are randomly
generated and likely (but not exactly) represent the object and
background respectively. Each pixel is associated with an edge
confidence (EC) value that is initialized as zero. Whenever a
shortest path is found, all pixels on the path are added by one
on their EC value. The final EC map of the whole image gives
an enhanced edge map of the original image, and thus the
segmentation can be performed by simply running the shortest
path twice on the object boundaries. As the number of shortest
paths executed affects the quality of the EC map (typically, the
more the number of paths, the better the EC map), our method
can be thought of as a Monte Carlo method.

The rest of the paper is organized as follows. In Section II,
we give the detail of our algorithm in several steps with an
example of cardiac cell image. Section III shows some edge
enhancement and segmentation results, followed by our
conclusion in Section IV.

II. METHOD
Our method is based on the graph constructed from the

original image. As most of other graph-based methods, we treat
each pixel as a node and the 4-connectivity between pixels as

The work described was supported in part by an NIH Award (Number
R15HL103497) from the National Heart, Lung, and Blood Institute (NHLBI)
and by the UWM Research Growth Initiative.

 291

an edge in a graph. First, we define a gradient-dependent value
on every pixel in the image is as follows:

)*1.0exp()(IpG ∇−= , (1)

where I∇ is the gradient of the input image I. Then the edge

ije connecting two vertices ip and jp is assigned with the
weight as:

2

)()(ji
ij

pGpG
e

+
= . (2)

With the edge weight defined above, any shortest path
between two pixels in the image would try to go through the
image edges as the gradient magnitudes are high and hence the
edge weights are low.

Different from other graph-based methods, the idea of our
method is to use a number of randomized shortest paths to
enhance image edges. Every pixel p is associated with a so-
called edge confidence (EC) value, which is initialized as zero
for every pixel. Whenever a pixel p is visited by one shortest
path, the corresponding EC value is accumulated by one. After
all the shortest paths are found and applied to the visited pixels,
the EC value of a pixel will give a clue of how strong this pixel
lies on the image edges, hence producing enhanced edge map
of the original image. The key in this process is to determine
the end points (source and sink) of the shortest paths, as finding
the shortest path between two given points is a standard
procedure in graph theory. Below we shall give the details of
our algorithm in several steps.

A. Initial Seed Selection by Users
In this step, users should manually pick some seeds

representing foreground (object) and background (non-object)
using different colors. Usually the number of the object seeds is
less than that of the background seeds. Typically just a few (<
10) object seeds are necessary but they should be distributed
evenly inside of the object of interest. The background seeds
should be distributed around the object. Figure 1 illustrates an
example of initial seed selection on an electron microscopic
image of cardiac cells. As explained below, these seeds only
have high probability to be chosen as the object and
background. They may not be used as the sources or sinks of
the shortest paths in the segmentation algorithm.

Figure 1. Initial seeds selection on an electron microscopic image of cardiac

cells (image size: 177*180 pixels).

B. Generating Marching Distance Maps
 The user-selected seeds mentioned above roughly tell us
where the foreground and background are in the image. The
pairs formed between them, however, may not be statistically
sufficient to enhance the edges for accurate segmentation. To
add new pairs for the shortest paths, we must know where the
end (source or sink) points are and whether they are in
foreground or background. The classification of a position (i, j)
is achieved by using the marching distance as defined below:

Definition: Given a 2D scalar image I, the marching distance
between two points A and B in the function domain is defined
by [16]:

 }min{),(∫
→

∇=
BA

I
I dseBAMD (3)

where ∫
→BA

 is the integral along a path from A to B. The

minimization is conducted over all the paths from A to B.
Apparently the marching distance favors a path that goes
through low-gradient (or non-edge) regions. In other words, if
two points are in the same feature, the marching distance
between them should be small.
 Given a seed pixel S in an image, the marching distance
from S to all other pixels is so-called marching distance map,
which is similar to the shortest path distance from S to all
other pixels in the graph representation of the image. The
marching distance map can be efficiently computed by using
the fast marching method [17].

 (a) (b)

Figure 2. (a) Marching distance map from the user-picked object seeds. (b)
Marching distance map from the user-picked background seeds. The seeds are
shown in Figure 1. The blue color means smaller marching distances and by
contrast the red color indicates larger marching distances.

Figure 2 shows the marching distance maps by treating the
initial object seeds and the initial background seeds as the
seeds for the fast marching method [17], where the object and
background seeds are picked by a user as shown in Figure 1.
The colors in both maps are defined as: blue color means
small marching distance and red color means larger marching
distance. In other words, the blue pixels have higher chance to
be classified as objects while red pixels are more likely to be
the background in the given image.

 292

C. Random Seed Selection
The marching distance maps shown in Figure 2 are then

utilized to randomly generate source and sink points that will
be used to form the shortest paths. Basically the value of each
pixel in the marching distance map tells us the probability of
that pixel being the source or sink point. The lower the value
is, the higher the probability would be. Below we briefly
explain the steps of generating source points (representing the
object).

1. Randomly choose a pixel from the image. We denote
this random pixel as P. Let M (P) be the value of P in
the marching distance map (see Fig. 2).

2. We then generate a random number V (P)∈ [0, T],
where T is a pre-defined threshold. If M (P) ≤ V(P),
then the pixel P is chosen as a source point
(representing the object). Otherwise, ignore P.

3. Repeat (1-2) until sufficient number of source points
are chosen.

A similar procedure is applied to generate a set of sink
points (representing the background). Figure 3 shows an
example of source (in red) and sink (in blue) points. Note that
because of the random number generation, some source points
are in the background and some sink points in the foreground
(object) regions. These wrong classifications would affect the
segmentation. But as we will see below, our final
segmentation is a total contribution of all the shortest paths
formed by the source and sink points. Just a small number of
wrong classifications would not make much difference to the
final results. To that sense, our method is a Monte Carlo based
method.

Figure 3. The generation of source (in red, representing object) and sink (in
blue, representing background) points by using random number generation.

D. Image Edge Enhancement by Shortest Paths
The source and sink points generated above (see Figure 3

too) are paired and used to find the shortest paths by using the
edge weight as defined in Equation (2). For example, if we
have n source points and m sink points, then n×m pairs will be
considered and hence n×m shortest paths will be detected in
the graph. The algorithm we use to generate a shortest path is
the Shortest Path Faster Algorithm (SPFA).

Figure 4 shows the shortest path between one of source
(object) point and one of sink (background) points. We can see
that this path favors passing through the boundary of the object
because according to equation (2), the edge weights are small
on the boundary of the object.

Figure 4. The shorest path between one of the source (object) points and one
of the sink (background) points. Note the path favors going through the
boundary of the object due to the small edge weights on the boundary.

Figure 5 shows m shortest paths between one of the source
points and all the m sink points chosen by the random method
described above. Although we see many branches on the paths,
all paths do prefer to go through the boundary of the object.

Figure 5. The shorest paths between one of the source points (representing

the object) and all the sink points (representing the background).

 We then create a new image EC(i, j), representing the edge
confidence of the pixel (i, j), initialized as zero. For every one
of the n×m shortest path, if a pixel (i, j) is on the path, we add
one to its edge confidence value EC(i, j). After all n×m
shortest paths are checked, we will have a gray-scale image
EC(i, j), in which a large value indicates a high probability of
the pixel being on the object boundary. Figure 6 shows such
an example after the EC(i, j) image is rescaled to [0, 255].
From this figure we can see that the image edges are enhanced
due to the preference of the shortest paths going through the
object boundary. It is obvious now that our algorithms works
like a Monte Carlo method: the result becomes more and
more accurate as the number of samples (in our case , the
shortest paths) increases. Also, the more uniform the random
numbers are, the better the result would be.

Figure 6. The edge confidence (EC) map formed by adding one to pixels
where a shortest path goes through.

 293

E. Image Segmentation from the Enhanced Edges
After the image edges are enhanced by using the

randomized shortest paths, we detect the object boundary by
running the shortest path one more time. First, we search the
edge confidence (EC) image to find out the brightest pixel
(denoted by A) and we assume that this point be on the
boundary of the object. Then we search the neighborhood of
this pixel and find out the brightest neighboring pixel (denoted
by B). Then we form another graph by using the EC image. In
this graph, the edge weight is the inverted gray-scale value in
the EC image, such that the edges on the object boundary have
smaller edge weights. In particular, an edge where one of the
end points has zero EC value is assigned the weight infinite.
Also, the edge between A and B mentioned above is also
assigned the weight infinite. With these specifications, the
shortest path between A and B in this new graph would result in
the segmentation as shown in Figure 7 below.

Figure 7. The final segmentation result by using the randomized shortest
paths, an algorithm based on the Monte Carlo method.

III. RESULT
In this section we will test the proposed algorithm on

several biomedical images to show the effectiveness of our
method. Figure 8 shows a noisy image of cardiac cell with
264*235 pixels. In Figure 8 (a) we choose 3 initial object seeds
(in red) and a number of initial background seeds (in blue).
With these seeds, we generate the marching distance maps for
both the object and the background, as shown respectively in
Figure 8 (b) and (c). These maps are then used to randomly
generate the source (in red) and sink (in blue) points,
representing the object and background respectively, as seen in
Figure 8 (d). In this example, there are a total of 50 source and
100 sink points. These points are paired and the corresponding
5,000 shortest paths are found in about 1.6 seconds. Figure 8(e)
and (f) show the rescaled edge confidence image and the final
segmentation result of our method.

Figure 9 shows another example of noisy cardiac cell image
with 125*145 pixels. Figure 9(a) shows the initial seeds (one
object seed and a number of background seeds) picked by the
user. Figure 9(b) and (c) show the marching distance maps by
treating the user-picked seeds as the seeds for the fast marching
method. Figure 9(d) shows the randomly generated source (red)
and sink (blue) points by using the marching distance maps as
the probability. The computed edge confidence map that
combines all the shortest paths is shown in Figure 9(e). Figure
9(f) shows that the segmentation result. In this example, we
generates 50 source points and 100 sink points, and it takes
about 0.64 second to find all the 5,000 shortest paths.

（a） （b） (c)

（d） （e） (f)

Figure 8. Illustration of our algorithm on a cardiac cell with 264*235 pixels.
(a) Initial object (in red) and background (in blue) seeds picked by the user. (b)
The marching distance map from the object seeds. (c) The marching distance
map from the background seeds. (d) The randomly generated source (in red)
and sink (in blue) points by using the marching distance maps. (e) The
computed edge confidence image by adding all shortest paths together. (f) The
final segmentation result.

（a） （b） (c)

（d） （e） (f)

Figure 9. Illustration of our algorithm on a cardiac cell with 125*145 pixels.
(a) Initial object (in red) and background (in blue) seeds picked by the user. (b)
The marching distance map from the object seeds. (c) The marching distance
map from the background seeds. (d) The randomly generated source (in red)
and sink (in blue) points by using the marching distance maps. (e) The
computed edge confidence image by adding all shortest paths together. (f) The
final segmentation result.

 294

 （a） （b） (c)

（d） (e) (f)

Figure 10. Illustration of our algorithm on an MRI image of the heart with
128*128 pixels. (a) Initial object (in red) and background (in blue) seeds
picked by the user. (b) The marching distance map from the object seeds. (c)
The marching distance map from the background seeds. (d) The randomly
generated source (in red) and sink (in blue) points by using the marching
distance maps. (e) The enhanced edge confidence map. (f) The final
segmentation result of the left ventricle.

Figure 10 shows the performance of our approach on an
MRI image of a mouse's heart. In order to separate the two
closely-located features (namely, the left ventricle near the
center surrounded by the right ventricle), we must carefully
choose the initial seeds for the background, as shown in Figure
10 (a). As in the other examples, we show the marching
distance maps starting from the object and background seeds in
Figure 10(b) and (c) respectively. Figure 10(d) demonstrates
the randomly generated source (red) and sink (blue) points,
from which a number of shortest paths are found and used to
enhance the edges, as shown in Figure 10(e). The final
segmentation of the left ventricle is given in Figure 10(f). In
this example, we randomly generated 50 source (object) points
and 100 sink (background) points, and the total time for
calculating shortest paths is 0.29 second.

IV. CONCLUSION
In the present paper we described a new graph-based

algorithm to enhance the edges of a feature in an image by
using the shortest paths of random source and sink points. The
enhanced edge confidence image is then used to perform the
segmentation by using the shortest path detection again. Our
method is like the traditional Monte Carlo method in that the
resulting edge confidence image and hence the final

segmentation result become more accurate as the number of
random shortest paths increases. Therefore, our approach is
very scalable and can be very easily implemented in parallel
computing. Our future work will be refinement of the proposed
method in images with multiple features of interest.

REFERENCES
[1] E.N. Mortenson and W.A. Barrett. Interactive segmentation with

intelligent scissors. Graphical Models and Image Processing, pages 349-
384, 1998.

[2] C Rother, V Kolmogorov. Grabcut: Interactive foreground extraction
using iterated graph cuts . ACM Transactions on Graphics, vol. 23,
pp. 309–314, 2004.

[3] Gonzalez, R.C. and R.E. Woods, Digital image processing, Addison-
Wesley, 1992.

[4] Z. Yu and C. Bajaj, Image Segmentation Using Gradient Vector
Diffusion and Region Merging, in Proceedings of International
Conference on Pattern Recognition, pp. 941-944, 2002.

[5] R. Malladi, J.A. Sethian, and B.C. Vemuri, Shape modeling with front
propagation: A level set approach. IEEE Trans. Pattern Anal. Machine
Intell.,. 17(2), pp. 158-175, 1995.

[6] N. Volkmann, A novel three-dimensional variant of the watershed
transform for segmentation of electron density maps. J Struct Biol,. 138,
pp. 123-129, 2002.

[7] J. Shi and J. Malik, Normalized cuts and image segmentation.
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 731-737, 1997.

[8] A.S. Frangakis et al., Identification of macromolecular complexes in
cryoelectron tomograms of phantom cells. Proc Natl Acad Sci U S A,
99(22): pp. 14153-14158, 2002.

[9] Y. Boykov, G. Funka-Lea. Graph Cuts and Efficient N-D Image
Segmentation, International Journal of Computer Vision, vol. 70, no. 2,
pp. 109-131, 2006.

[10] A. Delong, Y. Boykov. A Scalable graph-cut algorithm for N-D grids,
Proceeding of Computer Vision and Patten Recognition , pages 1-8,
2008.

[11] O. Juan, Y. Boykov. Active graph cuts, Proceeding of Computer Vision
and Patten Recognition, pages 1023-1029, 2006.

[12] L. Grady. Random walks for image segmentation.. IEEE Transactions
on Pattern Anal. Machine Intell., 28(11):1768–1783, 2006.

[13] X. Bai and G. Sapiro. A geodesic framework for fast interactive image
and video segmentation and matting. In Proceedings of International
Conference on Computer Vision, pages 1-8, 2007.

[14] A. K. Sinop and L. Grady. A seeded image segmentation framework
unifying graph cuts and random walker which yields a new algorithm. In
Proceedings of International Conference on Computer Vision, pages 1-8,
2007.

[15] C. Couprie, L. Najman, L. Grady, and H. Talbot, Power watersheds: A
new image segmentation framework extending graph cuts, random
walker and optimal spanning forest, In Proceedings of International
Conference on Computer Vision, pages 731-738, 2009.

[16] Z. Yu and C. Bajaj, Automatic Ultrastructure Segmentation of
Reconstructed Cryo-EM Maps of Icosahedral Viruses. IEEE
Transactions on Image Processing,. 14(9): pp. 1324-1337, 2005.

[17] R. Malladi and J.A. Sethian. A real-time algorithm for medical shape
recovery, in Proc. of Int’l Conf. on Computer Vision, pp. 304–310, 1998.

