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Abstract—This paper describes a new method for image edge 
enhancement and boundary segmentation. Like many interactive 
graph-based segmentation methods, users are asked to provide 
some foreground (or object) and background seeds. A set of 
randomly generated points representing the foreground are 
paired with another set of random points representing the 
background. The corresponding shortest paths of all such pairs 
are found and accumulated. These paths tend to go through the 
boundaries of the object of interest. Therefore, the accumulated 
paths can enhance the object edges, from which the final 
segmentation is obtained. Several experiments are provided to 
demonstrate the effectiveness of the proposed approach.  
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I.  INTRODUCTION 
Image segmentation, as a fundamental problem in image 

processing and computer vision, tries to separates an object of 
interest from surrounding background in an image and has 
received tremendous attention from researchers in the computer 
imaging and vision areas. Many other tasks, such as shape 
modeling and feature recognition, rely largely on correct 
segmentation. Traditionally image segmentation has been 
performed by hand, but manual segmentation is very tedious, 
inaccurate, and quite often subjective from person to person, 
even with the help of sophisticated graphical user interface 
[1,2]. On the other hand, automated segmentation is still 
considered to be one of the hardest problems in the field of 
image processing, although various techniques have been 
described for automatic or semi-automatic segmentation. 
Commonly used methods include segmentation based on edge 
detection [3], region growing and/or region merging [4], active 
curve/surface motion [5], watershed immersion method [6], 
and normalized graph cut [7] and eigenvector analysis [8]. 

Among the popular methods used in image segmentation 
are graph-based methods. In these methods, an image is treated 
as a graph, where each pixel is a node and an edge is created 
between two adjacent pixels with 4- or 8-connectivity. There 
are several core graph-based algorithms, on top of which many 

other approaches are built. The first method is based on graph 
cuts [9,10,11], where the goal is to partition the graph into 
several connected components with certain optimization 
criteria and each of them corresponds to one  segmented feature 
(or background). This method works in a way similar to data 
classification – the intra-class difference is minimized while the 
inter-class difference is maximized. The second graph-based 
method is the random walker method [12]. This approach also 
treats the image as a weighted graph but assigns each pixel to a 
seed (belonging to an object or background) by considering the 
most likely random walker between the pixel and the seed 
found.  The third widely used graph-based method for image 
segmentation is the shortest path approach [13].  This approach 
assigns a pixel to the object if the path from the pixel to the 
object seed is shorter than paths to the background seed. All the 
three approaches have been formulated into a common 
framework in [14,15]. 

In the present paper we propose a new approach for image 
edge enhancement and segmentation. Our method also treats an 
input image as a weighted graph and utilizes shortest paths 
between two pixels. However, our method differs from other 
approaches in that the source and sink of a path are randomly 
generated and likely (but not exactly) represent the object and 
background respectively. Each pixel is associated with an edge 
confidence (EC) value that is initialized as zero. Whenever a 
shortest path is found, all pixels on the path are added by one 
on their EC value. The final EC map of the whole image gives 
an enhanced edge map of the original image, and thus the 
segmentation can be performed by simply running the shortest 
path twice on the object boundaries. As the number of shortest 
paths executed affects the quality of the EC map (typically, the 
more the number of paths, the better the EC map), our method 
can be thought of as a Monte Carlo method. 

The rest of the paper is organized as follows. In Section II, 
we give the detail of our algorithm in several steps with an 
example of cardiac cell image. Section III shows some edge 
enhancement and segmentation results, followed by our 
conclusion in Section IV.  

II. METHOD 
Our method is based on the graph constructed from the 

original image. As most of other graph-based methods, we treat 
each pixel as a node and the 4-connectivity between pixels as 
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an edge in a graph. First, we define a gradient-dependent value 
on every pixel in the image is as follows: 

  )*1.0exp()( IpG ∇−= ,                     (1) 

where I∇  is the gradient of the input image I. Then the edge 

ije  connecting two vertices ip  and jp  is assigned with the 
weight as: 
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With the edge weight defined above, any shortest path 
between two pixels in the image would try to go through the 
image edges as the gradient magnitudes are high and hence the 
edge weights are low.  

Different from other graph-based methods, the idea of our 
method is to use a number of randomized shortest paths to 
enhance image edges. Every pixel p  is associated with a so-
called edge confidence (EC) value, which is initialized as zero 
for every pixel. Whenever a pixel p  is visited by one shortest 
path, the corresponding EC value is accumulated by one. After 
all the shortest paths are found and applied to the visited pixels, 
the EC value of a pixel will give a clue of how strong this pixel 
lies on the image edges, hence producing enhanced edge map 
of the original image. The key in this process is to determine 
the end points (source and sink) of the shortest paths, as finding 
the shortest path between two given points is a standard 
procedure in graph theory.  Below we shall give the details of 
our algorithm in several steps. 

A. Initial Seed Selection by Users 
In this step, users should manually pick some seeds 

representing foreground (object) and background (non-object) 
using different colors. Usually the number of the object seeds is 
less than that of the background seeds. Typically just a few (< 
10) object seeds are necessary but they should be distributed 
evenly inside of the object of interest. The background seeds 
should be distributed around the object. Figure 1 illustrates an 
example of initial seed selection on an electron microscopic 
image of cardiac cells. As explained below, these seeds only 
have high probability to be chosen as the object and 
background. They may not be used as the sources or sinks of 
the shortest paths in the segmentation algorithm.   

 

 
Figure 1.  Initial seeds selection on an electron microscopic image of cardiac 

cells (image size: 177*180 pixels). 

B. Generating Marching Distance Maps 
     The user-selected seeds mentioned above roughly tell us 
where the foreground and background are in the image. The 
pairs formed between them, however, may not be statistically 
sufficient to enhance the edges for accurate segmentation. To 
add new pairs for the shortest paths, we must know where the 
end (source or sink) points are and whether they are in 
foreground or background. The classification of a position (i, j) 
is achieved by using the marching distance as defined below:  
 

Definition: Given a 2D scalar image I, the marching distance 
between two points A and B in the function domain is defined 
by [16]:  
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where ∫
→BA

 is the integral along a path from A to B. The 

minimization is conducted over all the paths from A to B. 
Apparently the marching distance favors a path that goes 
through low-gradient (or non-edge) regions. In other words, if 
two points are in the same feature, the marching distance 
between them should be small. 
     Given a seed pixel S in an image, the marching distance 
from S to all other pixels is so-called marching distance map, 
which is similar to the shortest path distance from S to all 
other pixels in the graph representation of the image. The 
marching distance map can be efficiently computed by using 
the fast marching method [17].  

 

     
                  (a)                                                     (b) 

Figure 2.  (a) Marching distance map from the user-picked object seeds. (b) 
Marching distance map from the user-picked background seeds. The seeds are 
shown in Figure 1. The blue color means smaller marching distances and by 
contrast the red color indicates larger marching distances. 

 

Figure 2 shows the marching distance maps by treating the 
initial object seeds and the initial background seeds as the 
seeds for the fast marching method [17], where the object and 
background seeds are picked by a user as shown in Figure 1. 
The colors in both maps are defined as: blue color means 
small marching distance and red color means larger marching 
distance. In other words, the blue pixels have higher chance to 
be classified as objects while red pixels are more likely to be 
the background in the given image.  
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C. Random Seed Selection 
The marching distance maps shown in Figure 2 are then 

utilized to randomly generate source and sink points that will 
be used to form the shortest paths. Basically the value of each 
pixel in the marching distance map tells us the probability of 
that pixel being the source or sink point. The lower the value 
is, the higher the probability would be. Below we briefly 
explain the steps of generating source points (representing  the 
object).  

1. Randomly choose a pixel from the image. We denote 
this random pixel as P. Let M (P) be the value of P in 
the marching distance map (see Fig. 2).  

2. We then generate a random number V (P)∈ [0, T], 
where T is a pre-defined threshold. If M (P) ≤ V(P), 
then the pixel P is chosen as a source point 
(representing the object). Otherwise, ignore P. 

3. Repeat (1-2) until sufficient number of source points 
are chosen. 

A similar procedure is applied to generate a set of sink 
points (representing the background). Figure 3 shows an 
example of source (in red) and sink (in blue) points. Note that 
because of the random number generation, some source points 
are in the background and some sink points in the foreground 
(object) regions. These wrong classifications would affect the 
segmentation. But as we will see below, our final 
segmentation is a total contribution of all the shortest paths 
formed by the source and sink points. Just a small number of 
wrong classifications would not make much difference to the 
final results. To that sense, our method is a Monte Carlo based 
method. 

 

Figure 3.  The generation of source (in red, representing object) and sink (in 
blue, representing background) points by using random number generation. 

D. Image Edge Enhancement by Shortest Paths 
The source and sink points generated above (see Figure 3 

too) are paired and used to find the shortest paths by using the 
edge weight as defined in Equation (2). For example, if we 
have n source points and m sink points, then n×m pairs will be 
considered and hence n×m shortest paths will be detected in 
the graph. The algorithm we use to generate a shortest path is 
the Shortest Path Faster Algorithm (SPFA). 

Figure 4 shows the shortest path between one of source 
(object) point and one of sink (background) points. We can see 
that this path favors passing through the boundary of the object 
because according to equation (2), the edge weights are small 
on the boundary of the object. 

 

Figure 4.  The shorest path between one of the source (object) points and one 
of the sink (background) points. Note the path favors going through the 
boundary of the object due to the small edge weights on the boundary. 

Figure 5 shows m shortest paths between one of the source 
points and all the m sink points chosen by the random method 
described above. Although we see many branches on the paths, 
all paths do prefer to go through the boundary of the object.  

  

 
Figure 5.  The shorest paths between one of the source points (representing  

the object) and all the sink points (representing the background). 

      We then create a new image EC(i, j), representing the edge 
confidence of the pixel (i, j), initialized as zero. For every one 
of the n×m shortest path, if a pixel (i, j) is on the path, we add 
one to its edge confidence value EC(i, j). After all n×m 
shortest paths are checked, we will have a gray-scale image 
EC(i, j), in which a large value indicates a high probability of 
the pixel being on the object boundary. Figure 6 shows such 
an example after the EC(i, j) image is rescaled to [0, 255]. 
From this figure we can see that the image edges are enhanced 
due to the preference of the shortest paths going through the 
object boundary. It is obvious now that our algorithms works 
like a Monte Carlo method: the  result becomes more and 
more accurate as the number of samples (in our case , the 
shortest paths) increases. Also, the more uniform the random 
numbers are, the better the result would be.   

 

Figure 6.  The edge confidence (EC) map formed by adding one to pixels 
where a shortest path goes through.  



                                                                                                                                          293

E. Image Segmentation from the Enhanced Edges 
After the image edges are enhanced by using the 

randomized shortest paths, we detect the object boundary by 
running the shortest path one more time. First, we search the 
edge confidence (EC) image to find out the brightest pixel 
(denoted by A) and we assume that this point be on the 
boundary of the object. Then we search the neighborhood of 
this pixel and find out the brightest neighboring pixel (denoted 
by B). Then we form another graph by using the EC image. In 
this graph, the edge weight is the inverted gray-scale value in 
the EC image, such that the edges on the object boundary have 
smaller edge weights. In particular, an edge where one of the 
end points has zero EC value is assigned the weight infinite. 
Also, the edge between A and B mentioned above is also 
assigned the weight infinite. With these specifications, the 
shortest path between A and B in this new graph would result in 
the segmentation as shown in Figure 7 below. 

 

 

Figure 7.  The final segmentation result by using the randomized shortest 
paths, an algorithm based on the Monte Carlo method. 

III. RESULT 
In this section we will test the proposed algorithm on 

several biomedical images to show the effectiveness of our 
method. Figure 8 shows a noisy image of cardiac cell with 
264*235 pixels. In Figure 8 (a) we choose 3 initial object seeds 
(in red) and a number of initial background seeds (in blue). 
With these seeds, we generate the marching distance maps for 
both the object and the background, as shown respectively in 
Figure 8 (b) and (c). These maps are then used to randomly 
generate the source (in red) and sink (in blue) points, 
representing the object and background respectively, as seen in 
Figure 8 (d). In this example, there are a total of 50 source and 
100 sink points. These points are paired and the corresponding 
5,000 shortest paths are found in about 1.6 seconds. Figure 8(e) 
and (f) show the rescaled edge confidence image and the final 
segmentation result of our method.  

Figure 9 shows another example of noisy cardiac cell image 
with 125*145 pixels. Figure 9(a) shows the initial seeds (one 
object seed and a number of background seeds) picked by the 
user. Figure 9(b) and (c) show the marching distance maps by 
treating the user-picked seeds as the seeds for the fast marching 
method. Figure 9(d) shows the randomly generated source (red) 
and sink (blue) points by using the marching distance maps as 
the probability. The computed edge confidence map that 
combines all the shortest paths is shown in Figure 9(e). Figure 
9(f) shows that the segmentation result. In this example, we 
generates 50 source points and 100 sink points, and it takes 
about 0.64 second to find all the 5,000 shortest paths. 

 

          

（a）                              （b）                                 (c) 

       

（d）                              （e）                                 (f) 

Figure 8.  Illustration of our algorithm on a cardiac cell with 264*235 pixels. 
(a) Initial object (in red) and background (in blue) seeds picked by the user. (b) 
The marching distance map from the object seeds. (c) The marching distance 
map from the background seeds. (d) The randomly generated source (in red) 
and sink (in blue) points by using the marching distance maps. (e) The 
computed edge confidence image by adding all shortest paths together. (f) The 
final segmentation result. 

 

              

（a）                              （b）                                 (c) 

             

（d）                              （e）                                 (f) 

Figure 9.  Illustration of our algorithm on a cardiac cell with 125*145 pixels. 
(a) Initial object (in red) and background (in blue) seeds picked by the user. (b) 
The marching distance map from the object seeds. (c) The marching distance 
map from the background seeds. (d) The randomly generated source (in red) 
and sink (in blue) points by using the marching distance maps. (e) The 
computed edge confidence image by adding all shortest paths together. (f) The 
final segmentation result. 
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   （a）                              （b）                                   (c) 

      

（d）                                   (e)                                      (f) 

Figure 10.  Illustration of our algorithm on an MRI image of the heart with 
128*128 pixels. (a) Initial object (in red) and background (in blue) seeds 
picked by the user. (b) The marching distance map from the object seeds. (c) 
The marching distance map from the background seeds. (d) The randomly 
generated source (in red) and sink (in blue) points by using the marching 
distance maps. (e) The enhanced edge confidence map. (f) The final 
segmentation result of the left ventricle. 

 

Figure 10 shows the performance of our approach on an 
MRI image of a mouse's heart. In order to separate the two 
closely-located features (namely, the left ventricle near the 
center surrounded by the right ventricle), we must carefully 
choose the initial seeds for the background, as shown in Figure 
10 (a). As in the other examples, we show the marching 
distance maps starting from the object and background seeds in 
Figure 10(b) and (c) respectively. Figure 10(d) demonstrates 
the randomly generated source (red) and sink (blue) points, 
from which a number of shortest paths are found and used to 
enhance the edges, as shown in Figure 10(e). The final 
segmentation of the left ventricle is given in Figure 10(f). In 
this example, we randomly generated 50 source (object) points 
and 100 sink (background) points, and the total time for 
calculating shortest paths is 0.29 second. 

IV. CONCLUSION 
In the present paper we described a new graph-based 

algorithm to enhance the edges of a feature in an image by 
using the shortest paths of random source and sink points. The 
enhanced edge confidence image is then used to perform the 
segmentation by using the shortest path detection again. Our 
method is like the traditional Monte Carlo method in that the 
resulting edge confidence image and hence the final 

segmentation result become more accurate as the number of 
random shortest paths increases. Therefore, our approach is 
very scalable and can be very easily implemented in parallel 
computing. Our future work will be refinement of the proposed 
method in images with multiple features of interest. 
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